Las paradojas de Zenón

Los antiguos griegos idearon muchas paradojas concernientes al tiempo y al movimiento. Jugando con el significado equívoco de conceptos como el infinito y el infinito, Zenón de Elea, que vivió aproximadamente entre el 495 y el 435 a. de C. formuló algunas paradojas, una de las más famosas fue la propuesta acerca de un corredor.

La paradoja de la dicotomía o de la bipartición de las distancias

El corredor de Zenón razonaba así:

Corredor: Antes de alcanzar la meta habré de pasar por el punto medio. Y después habré de alcanzar la marca de 3/4, que está a la mitad de la distancia restante. Y antes de recorrer la cuarta parte final tendré que pasar por otra marca de mitad del trayecto. Estas marcas intermedias no acaban jamás. !Nunca podré alcanzar la meta!

Para poner un ejemplo más concreto del razonamiento de Zenón, supongamos que un corredor de maratón A tenga que recorrer la distancia BC, sometida a un número infinito de subdivisiones, en un tiempo finito; ésta es, evidentemente, una suposición absurda porque !no es posible recorrer un espacio compuesto de elementos infinitos en un lapso de tiempo finito! Por consiguiente, el movimiento es imposible, aunque la experiencia común nos diga lo contrario.

<< La paradoja del Quijote
Regresión infinita >>